Dansk - English

Kort version - Fuld version


Artificial Neural Network (Efterår 2007)

Kursuskode : IANN-U01
ECTS Point : 7,5 Status : Tilvalg
Placering : 5-7 semester Timer pr. uge : 4
Længde : 1 semester Undervisningssprog : Dansk hvis der ikke er engelsksprogede studerende tilstede

Hovedindhold : Introduction to the principles of the human brain, neurons, dendrites, axom,….
Artificial Neural Network components:
- Adaline, perceptron, multiplayer perceptrons
- Linear models, estimation, regression, least square, LMS algorithm
- Patterns recognition, classifiers, training parameters’
- Training algoritms, backpropagation,adaptive systems
- Nonlinear models, perceptron, MLP, training, classification, error and stopcriterias
- Function approximation with MLP, Radial Basis funcionc, vector support machines
- Hebbian learning, Oja´s rule, anti-hebbian learning, Associate memory, winner-take-all network, adaptive resonance theory
- Digital signal processing, time series, frequency domain, adaptive filters
- Static versus Dynamic systems, time-delay neural network, gamma memory
- Training and using recurrent network, feedback parameters, hopfield network, Grossbergs additive model
- Introduction to pulsed neural network and related electronics
Undervisningsform : The curriculum is based on an interactive book – overview lessons will allow (groups of) the student to study the interactive sessions and perform the related simulation exercises.
Krævede forudsætninger : Documented knowledge of math corresponding to DSM3/DSM4
Analogue or digital design equivalent to 4th semester level.
Ansvarlig underviser : Gert Hvedstrup Jensen , ghje@dtu.dk